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Support Vector Machines are one of the most 
popular tools for classification or regression. There 
are several open-source SVM training 
implementations utilizing GPUs, but many of them 
are now obsolete and don't perform well on 
modern GPUs. There haven't been much 
development in this area in the past few years and 
the goal of this work is to introduce our own 
implementation of SVM training in CUDA. This 
poster shows the basic workings of our 
implementation and compares the training speed 
and model quality to several well-known open-
source SVM training implementations.

Abstract
Training time and model accuracy of all 
implementations were evaluated. Datasets 20 
Newsgroups, RCV1 and Real-Sim are sparse and 
only some implementations were able to train 
them. N/A in the table denotes that sparse datasets 
are not supported.

Model accuracy is shown in table 2. Almost all 
implementations give models of the same quality. 
GTSVM and WU-SVM trained worse models on 
some datasets. WU-SVM also trained slightly better 
models on Epsilon and Adult a9a, but took very long 
time.

GTSVM has a configuration option specifying 
whether to use small or large clusters. Both options 
were evaluated and model with better accuracy was 
used. With large clusters, GTSVM crashed on out of 
memory when training dataset 20 Newsgroups.

Below are charts showing training time in seconds 
on a PC with Intel i7-4790K, 32 GB RAM, NVIDIA 
GTX 980 Ti.

Test Setup

Our SVM training implementation is based on 
sequential minimal optimization (SMO) algorithm. 
In SMO algorithm, 2 points are selected from 
working set and optimised in each iteration. This 
working set is usually equal to training set. Our 
implementation uses a working set of specific user-
defined size. In one iteration, these steps are 
performed:

1. Working set selection
Working set of size N is selected according to the 
method described below. In the first iteration 
working set is selected using LibSVM's first order 
heuristic

2. Local kernel matrix calculation
Kernel matrix tile of size N × N for local solver is 
computed. If possible, already computed rows 
are copied from kernel matrix cache

3. Local solver
One CUDA kernel uses SMO algorithm to 
optimize local subproblem. Block size is equal to 
working set size, because each thread optimizes 
one element 

4. Kernel cache update
Rows of kernel cache belonging to alphas which 
were modified in the local solver are calculated

5. Gradient update
Gradient has to be updated only for alphas 
modified in this iteration

From our experiments we found that the fastest 
convergence can be achieved with this working set 
selection method:

1. Sort all points by how much they violate KKT 
conditions

2. Pick N/4 first points from both classes
3. Sort points from last iteration's working set by 

their score in ascending order. Score is a value 
equal to how many consecutive iterations a 
particular point was in a working set.

4. Pick enough free vectors to fill new working set
5. If working set not full, pick enough lower bound 

vectors to fill new working set
6. If working set not full, pick enough upper bound 

vectors to fill new working set

This working set selection assumes that if a point 
was selected in working set, it might be selected 
again in the next iteration. Keeping it in working set 
for a few iterations takes advantage of already 
computed kernel values for these points.

Kernel matrix calculation is the most expensive part 
of the algorithm. Each iteration the kernel values for 
all points in the working set are calculated at once, 
which is very efficient on GPGPUs. Local solver does 
not need to calculate any kernel values.

Our Implementation

Several LIBSVM Datasets and subsets of Pascal 
Large Scale Learning Challenge, alpha and epsilon, 
were used. They’re available at: 
http://largescale.ml.tu-berlin.de 
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/data
sets/

All experiments were performed with RBF kernel, 
since it is the only kernel supported by all 
implementations. The threshold epsilon was set to
0.001. Used datasets with parameters C and gamma 
are shown in table 1.

Several open-source GPU accelerated SVM training 
implementations were chosen and their 
performance was evaluated on each dataset.
Used implementations are:

• cuSVM (Austin Carpenter)
http://patternsonascreen.net/cuSVM.html
Supports only RBF kernel, has MATLAB interface

• GPU-SVM (Brian Catanzaro)
https://code.google.com/p/gpusvm/

• GTSVM (Andrew Cotter, Nathan Srebro, Joseph 
Keshet)

http://ttic.uchicago.edu/~cotter/projects/gtsvm/
Supports RBF, polynomial and sigmoid kernels
Has command line, MATLAB and C interface
Supports sparse data

• MultiSVM (Sergio. Herrero-Lopez)
https://code.google.com/p/multisvm/
Can solve multiclass SVM problems
Handles binary data

• WU-SVM (Stephen Tyree, Jacob R. Gardner, Kilian 
Q. Weinberger, Kunal Agrawal, John Tran)

http://machinelearning.wustl.edu/pmwiki.php
/Main/Wusvm

• Our implementation
https://github.com/OrcusCZ/SVMbenchmark
Supports only RBF kernel
Supports sparse data

Results

Name #train #test #features C gamma

Epsilon 40,000 10,000 2,000 32 0.0001

Alpha 10,000 50,000 500 512 0.002

Timit 63,881 22,257 39 1 0.025

Adult a9a 32,561 16,281 123 4 0.5

Web w8a 49,749 14,951 300 4 0.5

MNIST even vs odd 60,000 10,000 784 1 0.02

Cov1 Forest 522,911 58,101 54 3 1.0

20 Newsgroups 19,996 19,996 1,335,191 4 0.5

RCV1 20,242 677,399 47,236 4 0.5

Real-Sim 72,309 72,309 20,958 4 0.5
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Dataset cuSVM GPU-SVM GTSVM MultiSVM WU-SVM Ours

Epsilon 88.6 % 88.6 % 88.5 % 88.6 % 88.7 % 88.6 %

Alpha 78.6 % 78.6 % 77.1 % 78.6 % 78.5 % 78.6 %

Timit 87.7 % 87.7 % 87.7 % 87.7 % 87.2 % 87.7 %

Adult a9a 82.7 % 82.7 % 82.7 % 82.7 % 83.5 % 82.7 %

Web w8a 99.4 % 99.4 % 99.4 % 99.4 % 97.8 % 99.4 %

MNIST 98.9 % 98.9 % 98.9 % 98.9 % 98.4 % 98.9 %

Cov1 Forest 84.9 % 84.9 % 63.0 % 84.9 % 83.0 % 84.9 %

20 News. N/A N/A 99.9 % N/A N/A 99.9 %

RCV1 N/A N/A 96.5 % N/A N/A 96.5 %

Real-Sim N/A N/A 99.7 % .N/A N/A 99.7 %
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Table 2: Trained model accuracy

Table 1: Used datasets
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