IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

A GPU-Architecture Optimized Hierarchical
Decomposition Algorithm for Support Vector
Machine Training

Jan Vanék, Josef Michalek, and Josef Psutka

Abstract—In the last decade, several GPU implementations of Support Vector Machine (SVM) training with nonlinear kernels were
published. Some of them even with source codes. The most effective ones are based on Sequential Minimal Optimization (SMO). They
decompose the restricted quadratic problem into a series of smallest possible subproblems, which are then solved analytically. For
large datasets, the majority of elapsed time is spent by a large amount of matrix-vector multiplications that cannot be computed
efficiently on current GPUs because of limited memory bandwidth. In this paper, we introduce a novel GPU approach to the SVM
training that we call Optimized Hierarchical Decomposition SVM (OHD-SVM). It uses a hierarchical decomposition iterative algorithm
that fits better to actual GPU architecture. The low decomposition level uses a single GPU multiprocessor to efficiently solve a local
subproblem. Nowadays a single GPU multiprocessor can run thousand or more threads that are able to synchronize quickly. It is an
ideal platform for a single kernel SMO-based local solver with fast local iterations. The high decomposition level updates gradients of
entire training set and selects a new local working set. The gradient update requires many kernel values that are costly to compute.
However, solving a large local subproblem offers an efficient kernel values computation via a matrix-matrix multiplication that is much
more efficient than the matrix-vector multiplication used in already published implementations. Along with a description of our
implementation, the paper includes an exact comparison of five publicly available C++ SVM training GPU implementations. In this
paper, the binary classification task and RBF kernel function are taken into account as it is usual in most of the recent papers.
According to the measured results on a wide set of publicly available datasets, our proposed approach excelled significantly over the
other methods in all datasets. The biggest difference was on the largest dataset where we achieved speed-up up to 12 times in
comparison with the fastest already published GPU implementation. Moreover, our OHD-SVM is the only one that can handle dense as
well as sparse datasets. Along with this paper, we published the source-codes at https://github.com/OrcusCZ/OHD-SVM.

Index Terms—Support Vector Machines, SVM Training, GPU, CUDA, Optimization

1 INTRODUCTION

UPPORT Vector Machines are popular general purpose

learning methods. They offer a good generalization
ability through maximizing of the margin controlled by a
manual setting regularization constant. SVMs can also deal
with a high variability of problems because of a user-defined
kernel function. SVMs were originally developed for binary
classification, but the multi-class variant is also possible.

Training an SVM amounts to solving a quadratic pro-
gramming problem. A good overview of optimization tech-
niques can be found in [1]. Very efficient solutions were
developed especially for linear or linearized SVMs [2], [3],
[4], [5]. Nonlinear SVMs solvers are mostly based on a
decomposition technique in the dual formulation of the
SVM criterion. The most frequent approach is SMO with
the subset of two components which has a simple analytical
solution introduced by Platt in [6]. The two-components
SMO was generalized to a three-components SMO by Lin
in [7]. In contrast, Joachims solves small subproblems by
Cholesky factorization [8]. A decomposition technique with
a gradient projection of subproblems was proposed by Zani
in [9]. Platt’s SMO was further improved by Keerthi in
[10]. Fan implemented a LibSVM which is based on Keerthi

o The authors are with the University of West Bohemia,
New Technologies for the Information Society, Pilsen, Czech Republic
E-mail: {vanekyj, orcus, psutka}@ntis.zcu.cz

improved SMO [11] and it is still used as a reference due
to a robust working set heuristic, a kernel caching, and a
shrinking technique.

However, large SVM problems require high-
performance implementations to train a model in reasonable
time. One option for large dense datasets is to compute a
kernel function via CPU optimized Intel or AMD libraries
which have also multi-core support. More advanced multi-
core and multi-node CPU implementations were described
by Elad, Cao, Goncalves, and You in [12], [13], [14], and
[15], respectively. Dong in [16] proposed an approach based
on a reduced block-diagonal Gram-matrix and Graf in [17]
proposed an SVM cascade that has similar behavior: faster
elimination of non-support vectors.

In the last decade, GPU computation power have been
utilized by machine learning applications widely. Because
this paper is about the GPU implementation, we analyzed
already published GPU implementations in more detail.
Most SVM training GPU implementations were focused on
dense data where a higher algorithmic complexity and the
regular data structure match better with the GPU architec-
ture. However, there are some sparse implementations, also.
Recently, we published a review of the open-source CUDA
C implementations [18], where a performance of most of the
bellow mentioned implementations were compared.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

1.1 GPUSVM

GPUSVM from Brian Catanzaro et al. [19] is an open-
source CUDA implementation of SMO. It supports dense
data and two-class SVM classification (C-SVM) with linear,
polynomial, radial basis function (RBF), and sigmoid kernel
functions. The CUBLAS library for kernel function values
was not used. Custom CUDA kernels are used instead. Both,
the first and the second order heuristic, were implemented
to select the SMO working set. Using the second order
heuristic decreases the number of the training iterations
needed to converge but the individual iterations require
significantly more work than the first order heuristic due
to extra kernel function evaluations. Therefore, an adaptive
heuristic is used in GPUSVM. It chooses between the two
selection heuristics dynamically, with no input or tuning
from the user. The adaptive heuristic reduces the total
training time on most of the datasets. Better computation
effectiveness is also obtained in the case of the first order
heuristic with the cache-miss of both working-set vectors.
Then, the kernel function is evaluated for both of the vectors
at once by a special, more effective, CUDA kernel. GPUSVM
achieves a speed-up of a magnitude on dense data sets with
the comparison to LibSVM, and it is one of the best perform-
ing already published GPU SVM training implementations.

1.2 cuSVM

cuSVM from Austin Carpenter [20] is practically just a
CUDA reimplementation of the LibSVM. It is open-source
and it supports the RBF kernel function only and two-class
SVM classification and regression for dense data. It has
a Matlab interface for train and prediction functions. The
CUBLAS library is used for the matrix-vector multiplication
in the RBF kernel function calculation. Although, cuSVM is
much faster than LibSVM, in most cases it is slower than
GPUSVM.

1.3 MultiSVM

Herrero-Lopez in [21] introduced a GPU multi-class SVM
training. It has been the first GPU SVM implementation
that allowed multi-class classification in a one-vs-all man-
ner besides the two-class problem. It supports dense data
and linear, polynomial, RBF, and sigmoid kernel functions.
The multi-class implementation does the training of partial
SVMs in parallel. So, there is another parallel layer that
helps to fully occupy current high-performance GPUs with
thousands of cores. A cross-task kernel caching technique is
used to significantly reduce the total amount of computa-
tions needed to calculate kernel function values where the
CUBLAS library is used for the matrix-vector multiplication.
It is open-source.

1.4 Li-GPUSVM

Qi Li and others from Vojislav Kecman group presented in
[22], [23] an SVM package under the same name like Catan-
zaro: GPUSVM. It offers multi-class and cross-validation
abilities. However, it supports only dense data and we were
not able to find source codes, therefore we cannot add it into
the comparison.

1.5 GPUMLib

GPUMLib is a larger open-source machine learning
project with a GPU implemented SVM module from Joao
Goncalves et al. [24]. Our first preliminary tests showed that
it was not stable on some of the tested datasets and first per-
formance results were significantly worse than GPUSVM.

1.6 WUSVM

The most recent dense GPU implementation is WUSVM
published by Tyree [25]. A sparse primal SVM variant of
the training algorithm is implemented in the open-source
WUSVM. Linear algebra operations are accelerated via Intel
MKL and OpenMP in the CPU variant case, and via the
NVIDIA CUBLAS library in the GPU case. Two-class dense
problems are supported with all common kernel functions.
The algorithm contains random shuffling of the training
data by default that brings a stochastic component that pro-
duces models with variable performance in variable training
times. In most cases, the training times were significantly
higher than e.g. GPUSVM.

1.7 ELLPACK-R SVM

Tsung-Kai Lin in [26] used the regularized ELLPACK sparse
matrix format. It was the first published sparse GPU im-
plementation. However, source-codes are not available. The
ELLPACK format is regularized to the CUDA warp size.
Than sparse-matrix dense-vector multiplication is very ef-
fective on GPU hardware. The SVM training implementa-
tion supports the multi-class tasks. In the multi-class train-
ing process, all the classifiers are being trained at the same
time. All training tasks share the same cache. However, the
operation in each task is computed serially. Every different
task evokes a kernel at each iteration, instead of evoking
only a single kernel like Herrero-Lopezs MultiSVM men-
tioned above. The serial approach is generally less efficient.

1.8 giSVM

Andrew Cotter in [27] used sparse data format and sup-
ported the two-class and even the multi-class SVM classi-
fication with the RBF kernel only. The open-source gtSVM
offers a Matlab interface. Computation is divided between
the CPU and the GPU, with large parallel computations
being performed on the graphics hardware and lightweight
serial tasks on the host processor. The working set values are
passed to the CPU at each iteration. It does not use SMO but
it uses a larger working set of size 16. The CPU optimizes the
subproblems and the GPU updates all elements and selects
the new working set for the next iteration. A clustering
algorithm is used to regularize sparsity patterns in data and
permits better memory access. The size of the clusters can be
selected from two options: large or small which means 256
or 16 samples, respectively. We marked those two variants
in the results section of the paper as gtSVM LC and gtSVM
SC.

1.9 KMLib

Krzysztof Sopyla in [28] used the standard CSR sparse
format that has lower memory requirements than the reg-
ularized ones. KMLib is open-source and it was written

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

in a now outdated version of .net with CUDA platform.
Therefore, it is not a standard C++/CUDA project and we
have failed to compile and run it successfully.

1.10 Non-GPU Implementations

All the above-mentioned GPU implementations were devel-
oped in nVidia CUDA. However, other platforms were also
in focus: e.g. Cadambi in [29] used FPGA, You in [30] used
Intel Xeon Phi coprocessor.

2 SUPPORT VECTOR MACHINE TRAINING

We will start with the simplest case, linear ma-
chines trained on separable data. Nonlinear machines
trained on non-separable data result in a very simi-
lar quadratic programming problem. Suppose we have
some hyperplane which separates positive from neg-
ative examples. The training data are labeled as
{ziyyi}, @ = 1,...,0, yi € {-1,1}, = € R
The points lying on the hyperplane satisfy w - + b = 0,
where w is normal to the hyperplane. Define the margin of
a separating hyperplane to be d + d_, where d (d_) is
the shortest distance from the separating hyperplane to the
closest positive (negative) example. For linearly separable
case, the support vector algorithm simply looks for the
separating hyperplane with the largest margin. This can be
formulated as follows:

We can find the solution by minimizing ||w||?/2 subject
to constraints (1).
The Lagrangian formulation of the problem is as follows:

l l
1
Lp= 5”“’”2— > i@ w+b) +Y a2
=1 i=1

We must now minimize L p with respect to w, b and si-
multaneously require that the derivatives of L p with respect
to all «; vanish, all subject to o; > 0. We can equivalently
solve the following dual problem: maximize L p, subject to
the constraints that the gradient of L p with respect to w and
b vanish and subject to a;; > 0. Requiring that the gradient
of Lp with respect to w and b vanish gives the following
conditions:

w=Y"ayw; ®)

Z aiy; =0 @

We can substitute these equality constraints into (2) to
get:

1
Lp = Zai —3 Z QO YiY T - T ®)
i i,

Support vector training is maximizing Lp with respect
to «; subject to constraints (4) and positive «;. Solution is
then given by (3). Points with «; > 0 lie on separating
hyperplanes and are called support vectors. If the training
was performed with all other training points removed, the
same separating hyperplane would be found.

3

This algorithm will not find a feasible solution when
used on non-separable data. The dual Lagrangian Lp will
grow arbitrarily large. We can overcome this problem by
relaxing condition (1) when necessary. This is done by

introducing positive slack variables { i = 1,...,0 in
constraints (1). New constraints are:
yi(xi - w+b) —14& >0, &>0 Vi (6)

For an error to occur, { must exceed 1, so >, &; is an
upper bound on the number of training errors. The objective
function is changed from ||w||?/2 to ||w]||?>/2 + C(3_, &)",
where C' is a parameter set by user. This is a convex
programming problem for any positive integer &, for k = 2
or k = 1itis also quadratic programming problem and if we
choose k = 1, then neither &; or their Lagrange multiplier
appear in the dual problem. The dual problem is still (5)
with the same constraints except that a; > 0 becomes
0 < a; < C. The solution is again given by (3).

In this algorithm, the decision function is a linear func-
tion of data, but it can be extended for a nonlinear case.
Training data in the training problem appear only in the
form of dot products x; - ;. They can be first mapped to
some other Euclidean space H using a function ®:

d: R H 7)

Now the training algorithm depends only on the dot
products of the training data in H, that is ®(x;) - ®(x;).
Let us define a kernel function K as:

K(zi,z;) = (x:) - O(;) ®)

In the training algorithm we can now use just the values of
the kernel function K without the need to explicitly know ®.
The most frequent kernel functions are the following:

o linear ®(x;,z;) = x; - x;
« polynomial ®(z;,z;) = (az; - x; + b)?
o radial basis function (RBF)
O(xs,2;) = exp(—7llz; — ;)
o sigmoid ®(x;,x;) = tanh(az; - x; + 1)

An optimal solution of equation (5) fulfills the Karush-
Kuhn-Tucker (KKT) conditions. The KKT conditions are:

a; = 0=y f(x;) > 1,
0<a; <C :>y1f(1‘1) =1, 9)
a; =C =y f(z;) < 1.

Most of the parallel implementations use Platt’'s SMO
algorithm improved by Keerthi and Fan. A simple algorithm
is as follows:

) Initialize a; =0, f; = —y;, Vi€ 1,...,1

) Select working set — j and k

3) Optimization step — Aca; and Aay,

) Update f;,Viel,...,1l

5) Go back to step 2 if KKT conditions not fulfilled

The working set selection may use the first or the second
order heuristic. Usually, the first index j is selected by the
first order and, with known j, the index k is selected by the
second order heuristic. Alternatively, both the indexes may

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

be selected by the first order heuristic. Using the second
order heuristic improves convergence and decreases the
number of iterations [11]. On the other hand, the second
order heuristic requires a j-th row of the Gram matrix Q.
If the row is not in the cache, its computation affects the
total performance. Catanzaro in [19] introduced a dynamic
switching between the first and the second order heuristic.
However, the update step requires j-th and k-th row of the
matrix () anyway. All the steps are parallelizable, except the
optimization step that is computationally undemanding.

Some implementations speed up convergence by using a
technique called shrinking. Shrinking reduces the problem
size by temporarily eliminating variables that are unlikely
to be selected by SMO algorithm because they have reached
their lower or upper bound. SMO iterations continue on
this reduced working set. Shrinking reduces the number of
kernel values needed to update the gradient vector.

3 OUR IMPLEMENTATION

Most GPU implementations are based on SMO. They de-
compose the quadratic problem into a series of the smallest
possible sub-problems, which are then solved analytically.
For large datasets, the majority of elapsed time is spent by
a large amount of matrix-vector multiplications that cannot
be computed efficiently on current GPUs because of limited
memory bandwidth. Also, a huge number of iterations
that requires CPU-GPU communication decreases the total
efficiency.

In contrast, our algorithm (OHD-SVM) is composed of a
hierarchy of 2 levels, we call them global and local. Global
level is described in Algorithm 1. It selects a working set of
predefined size Nws, usually equal to the number of threads
a CUDA kernel can execute in one block. Kernel matrix
for this reduced working set has size Nws x Nws, small
enough to be computed all at once. The local level of our
algorithm is a solver which optimizes this reduced problem
using working set selected by global level. We use SMO as
a local solver.

This local solver is implemented as a one-block CUDA
kernel that does many iterations without a need of costly
global synchronizations or CPU-GPU communication. Each
thread optimizes one point from the working set. The lo-
cal kernel matrix values are already computed when the
local solver is executed and the matrix is small enough to
efficiently use the GPU global memory cache. Compared to
the naive SMO, this approach needs only one CUDA kernel
launch for each global iteration and uses high parallelism to
compute all local kernel matrix rows at once. After the local
solver optimizes the reduced problem, the global gradient
vector is updated and a new working set is selected. The
gradient vector update needs full rows of the kernel matrix
belonging to vectors from the current working set. Comput-
ing Nws rows of the kernel matrix in each global iteration is
too costly and the entire kernel matrix is too large to fit into
the GPU memory. Therefore we had to implement our own
cache mechanism. It is described in Section 3.1.

This algorithm needs a greater number of total iterations
to converge than the SMO algorithm alone. However, most
of these iterations are done in SMO in our local solver, which
is a CUDA kernel launched only once per global iteration

4

and does not compute any kernel values during its local
iterations.

Alg. 1. Global-Level of our Algorithm
1: Precalculate 2
2: Precalculate a diagonal of K

3: ster <0

4: loop

5 if iter = 0 then

6 Select random working set

7: else

8 Select new working set > See algorithms 3 and 4
9: end if
10: Compute KTile
11: o —a
12: Execute local solver
13: if local solver iterations = 0 then
14: break
15: end if
16 Aa+—a—d
17: Compute all rows ¢ of K and save them to cache

VAO@ 75 0

18: Update g
19: iter < diter + 1
20: end loop

3.1 Kernel Matrix Cache Management

In each iteration, the SMO algorithm requires the kernel
function values for a pair of training vectors. Such values
can be used once or many times and take up a vast majority
of total computation time of the whole SVM training algo-
rithm. There is a total of N2 kernel values for training set
of size N. It is desirable to calculate kernel values only once
and use their values during SVM training, but kernel matrix
is larger than the available computer or GPU memory for
larger data sets. Therefore it is very important to implement
an efficient cache to remember often used kernel values.

In our implementation, the entire rows of kernel matrix
are saved into the cache. We use GPU for all cache man-
agement while other available implementations use CPU.
This approach avoids CPU-GPU synchronization and even
the selection of cache rows to compute is faster than if it
was done on CPU because we compute several rows of
kernel cache at once and use several parallel algorithms
when determining which rows to compute. This kernel is
described in detail in Algorithm 2.

Several variables are needed for cache management:

e K- Pointer to buffer with cached kernel values. The
buffer size is N X Nc,e Where N is the size of the
training set and Ny is the maximum number of
rows in the cache.

e KTile — Submatrix of K. Contains kernel values for all
vectors in the current working set.

e KCacheRemapldx — Array of pointers to the matrix K.
It contains offsets of rows from the buffer beginning
for each training vector. A value of —1 means the
corresponding row is not cached. Array size is V.

e KCacheRowldx — Array containing an index of a train-
ing vector to which a particular row of the cache

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

belongs. A value of —1 means that the row does not
belong to any training vector. Array size is Neace-

e KCacheRowPriority — Array of kernel cache row prior-
ities. It is used to determine which rows to discard if
the cache is full.

o KCacheRowsToCompute — Array of indices of cache
rows which should be computed this iteration.
KCacheRowldx can be used to retrieve the index of
the training vector to whom the particular cache row
belongs.

The local solver uses only variable KTile. It contains
all the kernel values for all the vectors from the current
working set and it is all that the local solver needs to know.
We compute KTile in one CUDA kernel.

The kernel function evaluation is the most expensive
part of the SVM training algorithm, therefore it is important
to focus on the optimization of the kernel matrix cache to
achieve a high SVM training speed. Vector norm in the
expression for the RBF kernel function can be modified to

|z — 2|* = af + 25 —2z; - @5

All values of z? for all z; from the training set are
calculated in the beginning of our training algorithm. z; - z;
is a dot product of two points from the training set. If we
want to compute the value of RBF kernel for many points,
we can use matrix multiplication to compute all these dot
products and this operation is very effective on graphic
processors.

3.1.1 Dense Data
All training vectors z; are saved in the matrix X

T

T2
X:

x n

After the selection of the new working set WS, we must
compute all the rows R of the kernel matrix where R C WS
and rows R are not already cached. If we wanted to compute
the entire kernel matrix, we would have to compute z; - z;
for all 4, j. This can be done on many different GPUs
efficiently by evaluating X - X7 using CUBLAS. To compute
the dot products only for rows R, we must evaluate X' X7,
where X' is a matrix constructed from X by using only
rows R.

CUBLAS GEMM gives the best performance when one
matrix is transposed, therefore we save the training data X
twice, once in normal order and once transposed.

We were not able to implement a faster function to
calculate these dots products than already highly optimized
CUBLAS GEMM function. Our algorithm uses these steps
to compute rows R of the kernel matrix cache:

1) Copy R rows from X to X’ in a CUDA kernel

2) Use CUBLAS GEMM to compute all the dot prod-
ucts x, - x;, wherer € R.

3) Launch a CUDA kernel to compute the RBF values
from the dot products using the expression

k. =exp—vy- (22 + x? — 22, - x5)

5

and save them to appropriate rows in the kernel ma-
trix cache. Column index j is an index of the point in
the training set. The kernel matrix row r is saved in
the kernel matrix cache row KCacheRemapldz[r],
where KCacheRemapldx is defined above.

The entire rows of kernel matrix are important for the
gradient update, but we also have to compute KT'ile for
the local solver. KT'ile is Nws X Nws matrix, where Ny
is the working set size. Unlike the entire kernel matrix,
KTile cannot be arbitrarily large and we can optimize its
computation for several specific values of Nys.

Our kernel for KTile computation is based on ma-
trix multiplication kernel with using shared memory. The
biggest difference is that we do not compute dot products
for rows of the output matrix if the appropriate values are in
kernel matrix cache. In this case, we just copy these values
from the cache and save computation time.

3.1.2 Sparse Data

To efficiently work with sparse data, we must choose the
appropriate data representation. We use both Compressed
Sparse Row (CSR) and Jagged Diagonal Storage (JDS) sparse
matrix formats.

A dense matrix can be transformed to CSR representa-
tion by omitting zero values and saving rows of all non-zero
values into an array. Such sparse matrix is then represented
by 3 arrays:

e Array of non-zero values

e Array of column indices

e Array of row offsets, pointing into the both arrays
above

The process of converting dense matrix to JDS is as
follows. All zero values are removed and the remaining
non-zero values are shifted to the left. Rows are sorted in a
decreasing order by the number of non-zeros. After that, the
columns are stored consecutively. This representation uses
5 arrays:

e Array of non-zero values

e Array of column indices

e Array of column offsets, pointing into the both arrays
above

o Array of row lengths, contains the length of each row
after sorting

e Row permutation array, contains indices of original
rows

The training set is stored twice in the memory, once for
each format. This is needed because different parts of the
training algorithm work faster with different sparse matrix
formats and short training time was our goal.

JDS is used when computing full rows of the kernel
matrix. In each iteration, a new working set of size Nys is
selected, of which the kernel function values for Ny, points
are not in cache, where 0 < N}, < Nys. All training vectors
belonging to Ny, non-cached rows are then expanded to the
dense representation. This allows us to write a simpler and
more efficient multiplication kernel, but more GPU memory
is needed for this step of the algorithm. Each thread in a
thread block computes one output value, a kernel function

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

value of training points blockIdr.y and perm[tidz], where
perm is the row permutation array and tidx is the thread
global index. Sorting the rows in JDS by length allows us to
minimize divergent threads in a warp, there can be only one
warp with less than warpSize threads running.

Only full rows of KTile are copied from the cache,
therefore N}, X Nys new values must be computed each
iteration. If JDS was used, there could not be enough thread
blocks executed to keep the GPU busy. Our CUDA kernel
using JDS launches with the total number of threads in
z dimension equal to Nys and it is a low number. The
maximum possible size of Nys is 2048 due to the CUDA
shared memory size limit. The working set of size 2048 is not
usually faster. It introduces overhead for each thread, which
has to calculate values of 2 training points. Output values
are also not written in coalesced manner, because of the JDS
row sorting. Therefore we use CSR format to compute KTile.
Each warp calculates one output value, a kernel function
value of training points blockldz.y and wi, where wi is
the global warp index. When calculating a matrix multi-
plication, each thread loops over training data dimension,
accumulating partial sums. CUDA shuffle instructions are
then used to reduce these partial sums efficiently.

3.2 Working Set Selection

Working set selection is a very important part of the training
algorithm. In SMO, a working pair is selected using either
first order or second order heuristic. Our local solver uses
first order heuristic to find out if the solution is optimal and
if not, second order heuristic is used to select new working
pair 7, 7.

These selection methods are defined only for 2 points,
but we need to select Nys points for the new working set
in each global iteration. The simplest approach would be to
use a similar algorithm to the first order selection, but to
take first Nys/2 values instead of one point for each ¢ and j.

However, we use the working set selection method pro-
posed by Serafini [31]. The method is as follows:

1) Define NC, usually equal to Nys/4.

2) Use first order heuristic to select NC points for both
t and j (Algorithm 3).

3) Put these points to the new working set.

4) Sort points in the old working set by a number of
iterations they were in WS. Old ones go to the back.

5) Fill the new working set with free, lower bound
and upper bound vectors from the old working
set in order until it is full. The sorting from the
previous step and the working set filling is in detail
in Algorithm 4.

This method allows us to select up to 2NC' new points
each iteration and reuse at least half of the old working
set. The assumption is that if the working set is optimized
and then some points in it are changed, already optimized
points are not optimized in the new working set but are
close to their final values. Also, the longer the point is in
the working set, the higher chance it has to be removed in
the next iteration. This avoids zigzagging of points during
iterations [31]. Our sorting algorithm is a bitonic sort. It
is easily implemented in parallel and performs well if the

Alg. 2. Algorithm Determining which Cache Rows to Compute
1: num <0 > total number of rows to compute
2: Declare o; for all ¢ in working set
3: Allocate NIdz|[Nys]
4: fori =0to Nyws — 1 do
processes one ¢

if Aa; # 0 then

> in parallel, each thread

> zero Aa is not used in gradient

update, skip it
6: w < ws[i] > w contains global index of training
vector
7: if KCacheRemapldz[w] < 0 then 1 if vector w is
not in cache
8: 0; < num > atomic operations needed due to
parallelism
9: num < num + 1
10: else
11: r < KCacheRemapldz[w] > get cache row
belonging to vector w
12: KCacheRowPriority[r] < cacheUpdateCnt
13: end if
14: end if
15: end for
16: for n = 0 to num — 1 do
17: Find cache row 7 with the lowest priority > parallel
reduction

18: NIdz[n] < i

19: KCacheRowPriority[i] = oo

20: end for > NIdx now contains indices of cache rows
which will be computed

21: fori =0 to num — 1 do
processes one n

22: 7 < NIdz[o;)

23: KCacheRowsToCompute[o;] < cache,ow

24: v < KCacheRowldz[r] > vector which is already
cached in row 7, if any

25: if v > 0 then > if cache row r contains valid data

> in parallel, each thread

26: KCacheRemapldz|v] <— —1 > remove vector v
from cache
27: end if

28: KCacheRowldz[r] < ws]i]

29: KCacheRemapldz|[ws[i]] < r

30: KCacheRowPriority[r] < cacheUpdateCnt
31: end for

number of sorted items is 2. We use only powers of 2 as
our working set size.

3.3 Local Solver

The local solver is used to optimize the sub-problem con-
sisting of points in the current working set. The rest of
the training set is ignored in this step. We use the SMO
algorithm as our local solver.

The whole local solver is implemented in one CUDA
kernel. Launch configuration is one block of Nys threads.
Since the number of threads is the same as the working set
size, we can use k' thread to process k™' element in the
working set. All training point specific data (¢, class, ...)
are saved in registers. Shared memory is used for parallel
reductions when selecting the current working pair in each

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Alg. 3. Working Set Selection Phase 1
Input:
Nws, working set size
y, array of training vector classes
a, array of Lagrange multipliers o
g, gradient of the dual objective function
Output:
NewWS, indices of elements in the new working set,
total output size is 2NC' elements
Input and Output:
WSPriority, priority of elements used for the working
set selection

NC < Nys/4
k < blockDim.x * blockIdx.x
while & < Niows do
if (yo =1ANa, <C)V (yp = -1 Ay > 0) then
Uk <= Yk * Gk
else
Vg < —00
end if
Sort all vy, in descending order and keep indices of
first NC values in the shared memory buffer shldx]
10: if (yp =1Nar >0)V (yr = —1Aax < C) then

D I AR R i o

11: Vg < Yk * Gk

12: else

13: Vi < —O0

14: end if

15: Sort all vy, in descending order and keep indices of

first NC' values in the shared memory buffer for shldx]

16: k + k + gridDim.x * blockDim.x

17: end while

18: Copy all values from shared memory buffers for I and J
of all thread blocks to global memory

19: Terminate all blocks but one

20: Sort buffers for I and J in global memory and keep first
NC values from each buffer

21: forn =0to NC — 1 do

22: i < shldxl[n)

23: j < shldzJ[n]

24 NewWS|[n] i

25: NewWS[n+ NC| + j

26 WSPriority[i] « oo

27: WSPriority[j] < oo

28: end for

iteration of the local solver and to exchange data between
threads when updating « coefficients.

Both first order and second order heuristics are used in
the kernel. The first order heuristic is used to determine if
the solution is optimal and to select the first point in the
working pair. The second order heuristic is used to select
the second point in the working pair. After the working
pair {i, j} is selected, both points are optimized against each
other. The values o; and a; and the whole gradient vector
for the working set are updated.

When the solution for the local sub-problem converges,
new o values and Aq are stored to global memory. It is
now necessary to update the gradient vector for all training

Alg. 4. Working Set Selection Phase 2

Input:
Nws, working set size
a, array of Lagrange multipliers o
NewWS, indices of elements in the new working set,
contains 2NC' elements

Input and Output:
WS, indices of elements in the current working set
WSPriority, priority of elements used for the working
set selection

NewWS’ +— NewWS

: Sort WS by priority (WSPriority) in ascending order

: for all free vectors k in WS do
if WSPriority, < oo A NewWS is not full then

Add training vector k to NewWS
WSPriority,, < WSPriority, + 1

end if

end for

: for all lower bound vectors k£ in WS do

if WSPriority, < oo A NewWS is not full then
Add training vector k to NewWS
WSPriority, < WSPriority;, + 1

end if

: end for

: for all upper bound vectors k in WS do

if WSPriority, < oo A NewWS' is not full then
Add training vector k to NewWS
WSPriority,, < WSPriority, + 1

end if

: end for

: WS « NewWS

: WSPriority,, < 0 Vk € NewWS’ > Reset priority for

newly selected elements

O X NGO

N NN R 2 R s = = =
IS R B L A vl =

points, so we can use it for the selection of the new working
set. To update the gradient, we need to know the kernel
matrix rows for the current working set. However, only gra-
dient elements belonging to non-zero Aa: must be updated.
Therefore we can save time by computing only those kernel
matrix rows, which belong to non-zero Aa. Without this
optimization, we would have to calculate the kernel matrix
rows for all the points in the working set, so they can be
used in the local solver, and then use them to update the
gradient vector. Table 6 shows the training time difference
between the algorithm with the separate kernel matrix tile
calculation and without it.

4 EXPERIMENTS

In this section we compared our OHD-SVM with other
available GPU implementations. In addition, we evaluated
various variants and setups of our approach.

4.1 Datasets Description

We tried to test all the implementations on the same datasets
that were frequently used in the referenced publications.
However, some regularization was needed. We omitted
most of the small datasets that might be challenging for 6 or

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

7 years old GPUs, but not now. Because some implementa-
tions are specialized for dense and some for sparse data, we
split datasets and result-tables into dense and sparse groups.
Some medium-sparse datasets were also added in the dense
form to the dense group for comparison. We performed
the two-class SVM training with the RBF kernel function
because it is supported by all the tested implementations.
A complete list of used datasets and the training
setup is in Table 1. Epsilon and Alpha datasets come
from the Pascal Large Scale Learning Challenge (http:
//largescale.ml.tu-berlin.de). They are very large
dense datasets. The entire Epsilon set has 400k samples
that most of the compared implementations cannot handle.
Therefore, we used only 10% of the set. The entire Alpha
set contains 500k samples. We used first 10k for training
and last 50k for testing. We used scaling for Epsilon and
Alpha datasets. The rest of the datasets come from the
LibSVM data page (https://www.csie.ntu.edu.tw/
~cjlin/libsvmtools/datasets/). TIMIT is a prepro-
cessed speech signal dataset where individual phonemes
are classified. It is a multi-class task. We converted it to
the binary classification task simply by even-vs-odd manner
according to the phoneme index. The same even-vs-odd ap-
proach was used for the MNIST dataset where hand-written
digits are classified. Adult and Web sets are the most popular
SVM datasets and we used the biggest variants of the
sets: Adult a9a and Web w8a. COV1 is a set of cartographic
variables for detection of the cover type. It is a multi-class
task but we used it as a detection of cover type 1 that is
forest. Therefore in some publications, the dataset is marked
as Forest dataset. News20 (20 Newsgroups), RCV1, and Real-
Sim are large sparse sets for the text categorization and the
training and testing setup was used according to [28].

4.2 Hardware Details

For all the tests we used a desktop PC with Intel Core i7-
4790K, 4-core CPU clocked at 4.0GHz with 32 GB RAM at
1600 MHz. We have used Visual Studio 2013 and CUDA 8.0
to compile the project.

Tested GPUs were:

e DPascal-based NVIDIA GTX 1080 with 2560 cores
clocked at 1607 MHz and 8 GB GDDR5X with band-
width 320 GB/s

e Maxwell-based NVIDIA GTX 980 Ti with 2816 cores
clocked at 1000 MHz and 6 GB GDDR5 with band-
width 336.5 GB/s

e Kepler-based NVIDIA GTX TITAN Black with
2880 cores clocked at 890 MHz and 6 GB GDDR5
with bandwidth 336 GB/s

Unless otherwise specified, the tables show the results
from GTX 1080, because it has the highest performance of
all of our cards. Other GPUs were used only to compare the
training speed of our implementation in Table 8.

4.3 Results

We have trained models for all datasets using our and
several other SVM training implementations. Training times
in seconds for dense and sparse datasets are shown in Tables
2 and 4. Trained model accuracy in percent is shown in

8

Tables 3 and 5. gtSVM has two configuration options called
“small clusters” and “large clusters”. We have trained the
model using both options and denote them in the Tables
using letters SC and LC.

The model accuracy of the most implementations is
comparable. The most popular CPU SVM training tool, Lib-
SVM, achieves the same accuracy. Some implementations
trained wrong models, where its accuracy was considerable
lower than that of other implementations (marked as WM
in Tables 2, 4, 3, and 5). multiSVM and gtSVM with small
and large clusters were unable to train good model for
COV1 dataset, which is the largest one. gtSVM failed for
both dense and sparse representation of COV1, therefore our
implementation was the only one able to train good model
for sparse COV1.

Our algorithm was significantly faster than all other
implementations for all datasets. The biggest difference was
on the largest datasets. E.g. for Epsilon dataset, our imple-
mentation was 12 times faster than gpuSVM, which is the
fastest already published dense implementation.

We have examined more variants of our algorithm. Our
final version uses the working set selection described in
Section 3.2 and calculates the kernel matrix tile for the
local solver in the separate kernel described in Section
3.1. In Table 6, we compared the training times with the
variant with the simple working set selection only. We also
compared the variant that does not use the separate kernel
for the kernel matrix tile calculation. Simple working set se-
lection produced much worse training times for all datasets
except Web where the training times were comparable. The
algorithm without separate kernel matrix tile calculation
was much slower for all dense datasets. For some sparse
datasets, it was negligible faster. Note that the last column
does not contain the number of iterations, because it was the
same as the final version column.

We have compared the training speed for various work-
ing set sizes. Table 7 shows that larger working set sizes
performed better, especially on the large datasets. Note that
dataset News20 could not be trained with working set of
size 1024 because of the limited GPU memory and the need
of temporary buffers for dense representation of training
points in the working set.

The maximum possible working set size is 2048 due to
the shared memory size limit. However, a CUDA kernel can
execute only up to 1024 threads in one block on current
GPUs. Therefore, the local solver kernel for working set
size of 2048 has to process two training points per thread.
This very complicates the local solver kernel code. The
preliminary results were worse than kernel for working set
sizes smaller or equal to 1024. Therefore, we did not add an
additional column to Table 7.

We have also analyzed the time spent on all steps of our
algorithm. Graphs, showing the relative time for each step
for a dense and a sparse dataset, are in Figures 1 and 2. We
selected Epsilon as a dataset for the dense graph and News20
for the sparse graph. Graphs show that the majority of the
time is spent on kernel matrix cache calculation. This shows
why this step is the most important to optimize well. In
the case of dense data, the kernel matrix cache calculation
uses highly optimized CUBLAS GEMM, therefore there is
not much space for improvement. In the case of large and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

TABLE 1
List of Used Datasets with the Main Features and the Training Setup

Dataset # Training # Test # Dim. Format C Gamma
Epsilon 40,000 10,000 2,000 Dense 32 0.0001
Alpha 10,000 50,000 500 Dense 512 0.002
TIMIT 63,881 22,257 39 Dense 1 0.025
Adult a% 32,561 16,281 123 Sparse 4 0.5
Web w8a 49,749 14,951 300 Sparse 4 0.5
MNIST 60,000 10,000 784 Sparse 1 0.02
COv1 522911 58,101 54 Sparse 3 1.0
News20 19,996 19,996 1,335191 Sparse 4 0.5
RCV1 20,242 677,399 47,236 Sparse 4 0.5
Real-Sim 72,309 72,309 20,958 Sparse 4 0.5
TABLE 7
Training Time for Various Working Set Sizes [s]
Dataset 64 128 256 512 1024
Epsilon dense 4.03 3.01 2.55 239 231
Alpha dense 10.21 7.38 5.99 5.72 5.77
Adult dense 2.53 2.05 1.85 1.89 1.69
Web dense 3.50 277 242 2.50 243
COV1 dense 67.17 52.51 45.97 41.06 29.53
MNIST dense 1.98 1.61 1.45 1.46 1.35
TIMIT dense 248 215 1.99 216 1.80
Adult sparse 2.35 2.13 2.05 2.20 2.15
Web sparse 3.04 2.97 2.78 2.97 3.08
COV1 sparse 13192 133.86 13342 13578 119.01
MNIST sparse 512 5.04 5.14 5.32 5.37
News20 sparse 38.67 38.19 38.41 38.57 N/A
RCV1 sparse 1.87 1.83 1.86 2.03 2.08

Real-Sim sparse 7.02 6.66 6.44 6.52 6.83

very sparse data, almost all the training time consists of the
kernel matrix cache calculation. The rest of kernels, except
the KTile calculation, are identical to the dense variant.
Sparse data do not fit well to GPU architecture, and it is
the main reason for the lower efficiency of the kernel matrix
cache calculation.

Finally, we have taken an interest in the effectiveness of
individual GPU architectures. We have trained the models
on 3 high-end GPUs with all the three recent architec-
tures: Kepler, Maxwell, and Pascal. Training times for those
GPUs are in Table 8. The table shows expected results, the
newer GPUs gave shorter training times. However, there
was a surprise: The biggest drop in training times was be-
tween the Kepler-based Titan Black and the Maxwell-based
GTX 980 Ti, where the theoretical calculation performance
does not differ much. The GTX 1080 was not much faster
than Maxwell-based GTX 980 Ti, however, theoretically, it
should be. On the other hand, the GTX 1080 produced much
less heat than its predecessors, due to a new 16nm FinFET
fabrication process. An additional reason that GTX 1080 did
not perform as fast as expected is the memory bandwidth
that did not improve over all the generations. We expect a
big step forward when a high bandwidth memory (HBM)
comes into play.

5 CONCLUSION

The most GPU implementations are based on SMO. The ma-
jority of elapsed time is spent by a large amount of matrix-
vector multiplications that cannot be computed efficiently
on current GPUs because of limited memory bandwidth,

1. WM means wrong model

TABLE 8
Training Time for Various GPUs [s]

Dataset GTX Titan Black GTX980Ti ~ GTX 1080
Architecture Kepler Maxwell Pascal
Epsilon dense 3.51 3.03 2.31
Alpha dense 13.78 7.55 5.77
Adult dense 3.31 222 1.69
Web dense 4.64 3.55 243
COV1 dense 66.76 39.92 29.53
MNIST dense 2.01 1.74 1.35
TIMIT dense 3.22 220 1.80
Adult sparse 4.08 2.90 2.15
Web sparse 6.09 3.95 3.08
COV1 sparse 156.97 120.14 119.01
MNIST sparse 6.33 6.64 5.37
News20 sparse 53.43 39.48 38.57
RCV1 sparse 3.38 2.31 2.08
Real-Sim sparse 11.88 7.57 6.83

M Kernel matrix computation 62% M Find N-best 6%
= Fill working set 1% M KTile calculation 13%
M Local solver 15% M G update 3%

Fig. 1. Relative Time Needed for Each Step of Our Algorithm for Epsilon

2% 1%

97%

M Kernel matrix computation 97% M KTile calculation 2% W Other steps 1%

Fig. 2. Relative Time Needed for Each Step of Our Algorithm for News20

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

TABLE 2

Training Time for Dense Data [s]

Implementation Epsilon ~ Alpha Adult Web COV1l MNIST TIMIT
cuSVM 39.25 101.38 1745 22.02 265.27 11.92 17.04
gpuSVM 28.04 26.26 3.36 7.58 301.04 5.89 2.86
multiSVM 51.34 90.04 18.69 2252 WM! (191.05) 12.22 17.73
wuSVM 122.08 6196 13156 13.61 596.86 79.21 203.86
gtSVM LC 47.80 31.45 3.19 402 WM!' (61.25) 3.72 2.43
gtSVM SC 77.22 36.38 3.37 443 WM! (112.12) 4.55 3.17
OHD-SVM 2.31 5.77 1.69 243 29.53 1.35 1.80
TABLE 3
Trained Model Accuracy for Dense Data [%)]
Implementation Epsilon Alpha Adult Web COV1l MNIST TIMIT
cuSVM 88.57 78.61 82.71 99.44 84.87 98.93 87.73
gpuSvVM 88.57 7859 8271 99.44 84.85 98.91 87.70
multiSVM 88.59 78.62 8271 9944 WM! (62.75) 98.93 87.73
wuSVM 88.70 78.51 83.45 97.85 82.97 98.43 87.16
gtSVM LC 88.46 7627 8271 99.44 WM! (50.80) 98.93 87.72
gtSVM SC 88.53 7714 8271 9944 WM! (62.97) 98.93 87.73
OHD-SVM 88.52 78.61 8271 99.44 84.87 98.93 87.73
TABLE 4
Training Time for Sparse Data [s]
Implementation. Adult Web COV1 MNIST News20 RCV1 Real-Sim
gtSVM LC 330 4.03 WM! (61.17) 3.69 605.53 15.83 53.66
gtSVM SC 344 427 WM! (111.58) 4.60 486.83 10.11 20.81
OHD-SVM 215 3.08 119.01 5.37 38.57 2.08 6.83
TABLE 5
Trained Model Accuracy for Sparse Data [%]
Implemen. a% w8a covl mnist news20 rcvl real-sim
gtSVM LC 8271 99.44 WM! (50.80) 98.93 99.88 96.54 99.73
gtSVM SC 82.71 99.44 WM! (62.97) 98.93 99.88 96.54 99.73
ours OHD-SVM 82.72 99.44 84.86 98.93 99.88 96.54 99.73
TABLE 6

Training Time and Numbe

r of Iterations of Other Variants of Our Algorithm

10

Final version Only first order WS selection ~ Without separate KTile calculation

Dataset Training time [s] ~ #iterations Training time [s] # iterations Training time [s]
Epsilon dense 2.31 43,661 82.17 116,795 4.93
Alpha dense 5.77 852,867 505.03 3,170,383 6.41
Adult dense 1.69 80,261 2.38 139,533 2.04
Web dense 243 95,795 2.27 90,534 4.31
COV1 dense 29.53 572,112 1,706.65 3,644,074 91.74
MNIST dense 1.35 22,726 4.18 48,981 3.31
TIMIT dense 1.80 65,321 6.33 136,624 2.36
Adult sparse 2.15 80,440 3.20 139,533 1.96
Web sparse 3.08 91,677 3.05 90,534 2.92
COV1 sparse 119.01 455,878 3,051.73 2,372,863 344.47
MNIST sparse 5.37 22,820 8.17 49,187 6.06
News20 sparse 38.57 38,097 50.94 56,869 37.00
RCV1 sparse 2.08 22,490 2.90 34,114 1.91
Real-Sim sparse 6.83 58,190 8.76 79,507 6.76

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

especially for large datasets. In this paper, we introduced a
novel GPU approach of the support vector machine training:
Optimized Hierarchical Decomposition SVM (OHD-SVM).
It uses a hierarchical decomposition iterative algorithm that
allows using matrix-matrix multiplication to calculate the
kernel matrix values. This approach is much more effective
and results in faster training. The local solver uses a single
multiprocessor to efficiently solve a local sub-problem by
SMO. The local iterations are very fast because it requires
only an intra-block threads synchronization.

We tested our algorithm and other implementations on
the most frequently used datasets. We used both dense
and sparse datasets, but our implementation is the only
one supporting both of them. Our algorithm is significantly
faster than all other implementations for all datasets. The
biggest difference was on the largest datasets where we
achieved speed-up up to 12 times in comparison with the
fastest already published GPU implementation. We have
also examined our algorithm in more detail. We compared
the final variant with the first order WS selection variant
and the variant without the separate KTile calculation. We
have evaluated the training times for various working set
sizes. We have analyzed the time spent on all steps of
our algorithm for the dense and sparse cases separately.
Finally, we have compared 3 recent GPU architectures:
Kepler, Maxwell, and Pascal. The newer GPUs are faster,
however, the individual results do not match with our prior
expectations.

Our implementation supports both Windows and
Linux and is freely available at https://github.com/
OrcusCZ/OHD-SVM.

ACKNOWLEDGMENTS

This research was supported by the Grant Agency of the
Czech Republic, project No. GACR GBP103/12/G084.

REFERENCES

[1] S.]J. Wright, “Optimization Algorithms in Support Vector Ma-
chines,” Computational Learning Workshop and Summer School, Uni-
versity of Chicago, 2009.

[2] M. Ferris and T. Munson, “Interior-Point Methods for Massive
Support Vector Machines,” SIAM Journal on Optimization, 2000.

[3] Shai Shalev-Shwartz, “Online Learning: Theory, Algorithms, and
Applications,” Ph.D. dissertation, Hebrew University, 2007.

[4] C. Hsieh, K. Chang, and C. Lin, “A Dual Coordinate Descent
Method for Large-Scale Linear SVM,” Proceedings of the 25th In-
ternational Conference on Machine Learning, 2008.

[5] T. Joachims, “Training Linear SVMs in Linear Time,” Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 217-226, 2006.

[6] . Platt, “Fast Training of Support Vector Machines Using Sequen-
tial Minimal Optimization,” Advances in Kernel Methods — Support
Vector Learning, pp. 185-208, 1999.

[7] Y-L.Lin,]J.-G. Hsieh, H.-K. Wu, and].-H. Jeng, “Three-Parameter
Sequential Minimal Optimization for Support Vector Machines,”
Neurocomputing, vol. 74, no. 17, pp. 3467-3475, Oct. 2011.

[8] T. Joachims, “Making Large-Scale SVM Learning Practical,” in
Advances in Kernel Methods — Support Vector Learning. MIT-Press,
1999, pp. 41-56.

[9] L. Zanni, T. Serafini, and G. Zanghirati, “Parallel Software for
Training Large Scale Support Vector Machines on Multiprocessor
Systems,” The Journal of Machine Learning Research, vol. 7, pp. 1467—-
1492, 2006.

[10] S. Keerthi and S. Shevade, “Improvements to Platt’s SMO Al-
gorithm for SVM Classifier Design,” Neural Computation, vol. 13,
no. 3, pp. 637649, 2001.

11

[11] R. Fan, P. Chen, and C. Lin, “Working Set Selection Using Second
Order Information for Training Support Vector Machines,” The
Journal of Machine Learning Research, vol. 6, pp. 1889-1918, 2005.

[12] E. Yom-Tov, “A Parallel Training Algorithm for Large Scale Sup-
port Vector Machines,” Neural Information Processing Systems Work-
shop on Large Scale Kernel Machines, pp. 1-9, 2005.

[13] L. Cao, S. Keerthi, and C. Ong, “Parallel Sequential Minimal
Optimization for the Training of Support Vector Machines,” IEEE
Transactions on Neural Networks, vol. 17, no. 4, pp. 1039-1049, 2006.

[14] J. Gongalves, N. Lopes, and B. Ribeiro, “Multi-Threaded Support
Vector Machines for Pattern Recognition,” Neural Information Pro-
cessing, pp. 616-623, 2012.

[15] Y. You, J. Demmel, K. Czechowski, L. Song, and R. Vuduc, “CA-
SVM: Communication-Avoiding Parallel Support Vector Machines
on Distributed Systems,” International Parallel and Ditributed Pro-
cessing Symposium, 2015.

[16] J. Dong, A. Krzyak, and C. Suen, “Fast SVM Training Algorithm
with Decomposition on Very Large Data Sets,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 27, no. 4, pp. 603
618, 2005.

[17] H. Graf and E. Cosatto, “Parallel Support Vector Machines: The
Cascade SVM,” Advances in Neural Information Processing Systems,
vol. 17, pp. 521-528, 2004.

[18] J. Vanek, J. Michalek, and]. Psutka, “A Review of GPU Open
Source Support Vector Machines Training Implementations,” Sub-
mitted to Parallel Processing Journal, vol. TBD, p. TBD, 2017.

[19] B. Catanzaro, N. Sundaram, and K. Keutzer, “Fast Support Vector
Machine Training and Classification on Graphics Processors,”
Proceedings of the 25th International Conference on Machine Learning,
pp- 104-111, 2008.

[20] A. Carpenter, “cuSVM: A CUDA Implementation of Sup-
port Vector Classification and Regression,” patternsonscreen.net/
cuSVMDesc.pdf, pp. 1-9, 2009.

[21] S.Herrero-Lopez, J. Williams, and A. Sanchez, “Parallel Multiclass
Classification Using SVMs on GPUs,” Proceedings of the 3rd Work-
shop on General-Purpose Computation on Graphics Processing Units,
pp. 2-11, 2010.

[22] Q.Li,R. Salman, and E. Test, “GPUSVM: A Comprehensive CUDA
Based Support Vector Machine Package,” Open Computer Science,
pp. 1-22, 2011.

[23] Q. Li, R. Salman, E. Test, R. Strack, and V. Kecman, “Parallel
Multitask Cross Validation for Support Vector Machine Using
GPU,” Journal of Parallel and Distributed Computing, vol. 73, no. 3,
pp- 293-302, Mar. 2013.

[24] N. Lopes and B. Ribeiros, “GPUMLIib: An Efficient Open-Source
GPU Machine Learning Library,” International Journal of Computer
Information Systems and Industrial Management Applications, vol. 3,
pp- 355-362, 2011.

[25] S. Tyree, J. R. Gardner, K. Q. Weinberger, K. Agrawal, and J. Tran,
“Parallel Support Vector Machines in Practice,” arXiv preprint
arXiv:1404.1066, 2014.

[26] T.-K.Lin and S.-Y. Chien, “Support Vector Machines on GPU with
Sparse Matrix Format,” in 2010 Ninth International Conference on
Machine Learning and Applications. leee, Dec. 2010, pp. 313-318.

[27] A. Cotter, N. Srebro, and J. Keshet, “A GPU-Tailored Approach for
Training Kernelized SVMs,” Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp.
805-813, 2011.

[28] K. Sopyla, P. Drozda, and P. Gérecki, “SVM with CUDA Accel-
erated Kernels for Big Sparse Problems,” Artificial Intelligence and
Soft Computing, pp. 439-447, 2012.

[29] S. Cadambi, I. Durdanovic, V. Jakkula, M. Sankaradass, E. Cosatto,
S. Chakradhar, and H. P. Graf, “A Massively Parallel FPGA-
Based Coprocessor for Support Vector Machines,” 2009 17th IEEE
Symposium on Field Programmable Custom Computing Machines, pp.
115-122, 2009.

[30] Y. You, S. L. Song, H. Fu, A. Marquez, M. M. Dehnavi, K. Barker,
K. W. Cameron, A. P. Randles, and G. Yang, “MIC-SVM: Designing
a Highly Efficient Support Vector Machine for Advanced Modern
Multi-core and Many-Core Architectures,” 2014 IEEE 28th Inter-
national Parallel and Distributed Processing Symposium, pp. 809-818,
May 2014.

[31] T.Serafini and L. Zanni, “On the Working Set Selection in Gradient
Projection-Based Decomposition Techniques for Support Vector
Machines,” Optimization Methods and Software, vol. 20, no. 4-5, pp.
583-596, 2005.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Jan Vanék Jan Vanék received the M.Sc. de-
gree equivalent in cybernetics in 2003 and the
Ph.D. degree in cybernetics in 2010, both from
the University of West Bohemia, Plze, Czech
Republic. He is currently a Research Assistant
at the New Technologies for the Information So-
ciety, University of West Bohemia, since 2014.
He was working also at the Institute of Physical
Biology in Nov Hrady, since 2006 to 2011. His
research interests include GPGPU programming
and optimizations, machine learning, automatic
speech recognition, acoustic modeling, signal and image processing.

Josef Michalek Josef Michalek received the
M.Sc. degree equivalent in cybernetics in 2014
from the University of West Bohemia, Plze,
Czech Republic. He is currently a Ph.D. candi-
date at the Department of Cybernetics, Univer-
sity of West Bohemia. His research interests in-
clude GPGPU programming and optimizations,
machine learning, and support vector machines.

Josef Psutka Josef Psutka received the M.Sc.
degree equivalent in electrical engineering and
the Ph.D. degree in cybernetics from the Czech
Technical University, Prague, Czech Repubilic,
in 1974 and 1980, respectively. He worked as
an Assistant Professor in the Technical Institute,
Plze, Czech Republic, from 1978 to 1991. In
1991, he joined the Department of Cybernetics,
University of West Bohemia, Plze, as an Asso-
ciate Professor, and became a Full Professor in
1997. He is Head of the Department of Cyber-
netics since 2003. In 2014, he joined the New Technologies for the
Information Society. His research interests include speech signal pro-
cessing, acoustic modeling, large-vocabulary ASR, speech synthesis,
and pattern recognition.

12

